R/forestcox.R
TableSubgroupCox.Rd
Sub-group analysis table for Cox/svycox model.
TableSubgroupCox( formula, var_subgroup = NULL, var_cov = NULL, data, time_eventrate = 3 * 365, decimal.hr = 2, decimal.percent = 1, decimal.pvalue = 3, cluster = NULL, strata = NULL, weights = NULL, event = FALSE, count_by = NULL, labeldata = NULL )
formula | formula with survival analysis. |
---|---|
var_subgroup | 1 sub-group variable for analysis, Default: NULL |
var_cov | Variables for additional adjust, Default: NULL |
data | Data or svydesign in survey package. |
time_eventrate | Time for kaplan-meier based event rate calculation, Default = 365 * 3 |
decimal.hr | Decimal for hazard ratio, Default: 2 |
decimal.percent | Decimal for percent, Default: 1 |
decimal.pvalue | Decimal for pvalue, Default: 3 |
cluster | Cluster variable for coxph, Default: NULL |
strata | Strata variable for coxph, Default: NULL |
weights | Weights variable for coxph, Default: NULL |
event | Show number and rates of event in survival analysis default:F |
count_by | Select variables to count by subgroup, Default: NULL |
labeldata | Label info, made by `mk.lev` function, Default: NULL |
Sub-group analysis table.
This result is used to make forestplot.
#> #>#>#> #>#>#> #>lung %>% mutate( status = as.integer(status == 1), sex = factor(sex), kk = factor(as.integer(pat.karno >= 70)) ) -> lung TableSubgroupCox(Surv(time, status) ~ sex, data = lung, time_eventrate = 100)#> Variable Count Percent Point Estimate Lower Upper sex=1 sex=2 P value #> sex2 Overall 228 100 1.91 1.14 3.2 0 1.2 0.014 #> P for interaction #> sex2 NA#> Variable Count Percent Point Estimate Lower Upper sex=1 sex=2 P value #> 1 kk <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> #> 2 0 38 16.9 2.88 0.31 26.49 0 0 0.35 #> 3 1 187 83.1 1.84 1.08 3.14 0 1.5 0.026 #> P for interaction #> 1 0.525 #> 2 <NA> #> 3 <NA>#>#>#> #>#>#> #>#> Warning: No weights or probabilities supplied, assuming equal probability#> Independent Sampling design (with replacement) #> svydesign(id = ~1, data = lung)#> Variable Count Percent Point Estimate Lower Upper sex=1 sex=2 P value #> sex2 Overall 228 100 1.91 1.14 3.19 0 1.2 0.013 #> P for interaction #> sex2 NATableSubgroupCox(Surv(time, status) ~ sex, var_subgroup = "kk", data = data.design, time_eventrate = 100 )#> Independent Sampling design (with replacement) #> svydesign(id = ~1, data = lung)#>#> Independent Sampling design (with replacement) #> subset(data, get(var_subgroup) == .) #> Independent Sampling design (with replacement) #> subset(data, get(var_subgroup) == .)#> Variable Count Percent Point Estimate Lower Upper sex=1 sex=2 P value #> 1 kk <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> #> 2 0 38 16.9 2.88 0.31 27.1 0 0 0.355 #> 3 1 187 83.1 1.84 1.08 3.11 0 2.9 0.024 #> P for interaction #> 1 0.523 #> 2 <NA> #> 3 <NA>