Sub-group analysis table for GLM.
TableSubgroupGLM( formula, var_subgroup = NULL, var_cov = NULL, data, family = "binomial", decimal.estimate = 2, decimal.percent = 1, decimal.pvalue = 3, labeldata = NULL )
formula | formula with survival analysis. |
---|---|
var_subgroup | 1 sub-group variable for analysis, Default: NULL |
var_cov | Variables for additional adjust, Default: NULL |
data | Data or svydesign in survey package. |
family | family, "gaussian" or "binomial" or 'poisson' or 'quasipoisson' |
decimal.estimate | Decimal for estimate, Default: 2 |
decimal.percent | Decimal for percent, Default: 1 |
decimal.pvalue | Decimal for pvalue, Default: 3 |
labeldata | Label info, made by `mk.lev` function, Default: NULL |
Sub-group analysis table.
This result is used to make forestplot.
library(survival) library(dplyr) lung %>% mutate( status = as.integer(status == 1), sex = factor(sex), kk = factor(as.integer(pat.karno >= 70)) ) -> lung TableSubgroupGLM(status ~ sex, data = lung, family = "binomial")#> Variable Count Percent OR Lower Upper P value P for interaction #> sex2 Overall 228 100 3.01 1.65 5.47 <0.001 NATableSubgroupGLM(status ~ sex, var_subgroup = "kk", data = lung, family = "binomial")#> Variable Count Percent OR Lower Upper P value P for interaction #> 1 kk <NA> <NA> <NA> <NA> <NA> NA 0.476 #> 2 0 38 16.9 7 0.7 70.03 0.098 <NA> #> 3 1 187 83.1 2.94 1.55 5.57 0.001 <NA>#> Warning: No weights or probabilities supplied, assuming equal probabilityTableSubgroupGLM(status ~ sex, data = data.design, family = "binomial")#> Variable Count Percent OR Lower Upper P value P for interaction #> sex2 Overall 228 100 3.01 1.65 5.48 <0.001 NATableSubgroupGLM(status ~ sex, var_subgroup = "kk", data = data.design, family = "binomial")#> Variable Count Percent OR Lower Upper P value P for interaction #> 1 kk <NA> <NA> <NA> <NA> <NA> NA 0.478 #> 2 0 38 16.9 7 0.7 70.4 0.107 <NA> #> 3 1 187 83.1 2.94 1.55 5.58 0.001 <NA>